随着互联网业务的高速发展,对构建互联网基础架构的网络设备提出了更高要求,例如容量、性能、扩展性以及QoS等诸多关键特性,而这往往是由其所采用的硬件架构决定的。以框式核心交换机为例,先后出现了多种硬件架构,而现在最为常用的有三种:Full-Mesh交换架构、Crossbar矩阵交换架构和基于Cell的CLOS交换架构。本文将通过对这三种硬件架构、报文转发流程等原理的分析,全面剖析三种架构的优劣势。
名词解释
Full-Mesh
架构说明
▲图1:Full-Mesh架构图
如图1所示,所有业务线卡通过背板走线连接到其它线卡,因为Full-Mesh不需要外部的交换芯片,而是任意两个节点间都有直接连接,故得名全连接。
由于各线卡需要Full-Mesh互联,一个节点数为N的Full-Mesh,连接总数为[N×(N-1)]÷2,所以随着节点数量增加连接总数也急剧上升,因而可扩展性较差,仅适用于槽位数量较少的核心设备。
报文转发流程
1、报文从线卡进入,跨卡报文送到与目的线卡连接的背板通路;
2、报文到达目的线卡。
Crossbar
架构说明
▲图2:Crossbar架构图
如图2所示,业务线卡通过背板走线连接到Crossbar芯片上,Crossbar芯片集成在主控引擎上。
▲图3:Crossbar芯片架构
Crossbar芯片架构如图3所示,每一条输入链路和输出链路都有一个CrossPoint,在CrossPoint处有一个半导体开关连接输入线路和输出线路,当来自某个端口的输入线路需要交换到另一个端口的输出点时,在CPU或交换矩阵的控制下,将交叉点的开关连接,数据就被发到另一个接口。
简单地说,Crossbar 架构是一种两级架构,它是一个开关矩阵,每一个CrossPoint都是一个开关,交换机通过控制开关来完成输入到特定输出的转发。如果交换具有N个输入和N个输出,那么该Crossbar Switch就是一个带有N*(N-1)≈N²个CrossPoint点的矩阵,可见,随着端口数量的增加,交叉点开关的数量呈几何级数增长。对于Crossbar芯片的电路集成水平、矩阵控制开关的制造难度、制造成本都会呈几何级数增长。所以,采用一块Crossbar交换背板的交换机,所能连接的端口数量也是有限的。
报文转发流程
• 无缓存Crossbar
每个交叉点没有缓存,业务调度采用集中调度的方式,对输入输出进行统一调度,报文转发流程如下:
1、报文从线卡进入,线卡先向Arbiter请求发送;
2、Arbiter根据输出端口队列拥塞情况,决定是否允许线卡发送报文到输出端口;
3、报文通过Crossbar转发到目的线卡输出端口。
由于是集中调度,所以仲裁器的调度算法复杂度很高,扩展性较差,系统容量大时仲裁器容易形成瓶颈,难以做到精确调度。
• 缓存式Crossbar
最早的缓存式Crossbar只有交叉节点带缓存,而输入端是无缓存的,被称为”bus matrix”,后来,CICQ的概念被引入,即在输入端用大的Input Buffer,在中间节点用小的CrossPoint Buffer。
这种结构采用分布式调度的方式进行业务调度,即输入和输出端都有各自的调度器,报文转发流程如下:
1、报文从线卡进入,输入端口通过特定的调度算法(如RR算法)独立地选择有效的VOQ;
2、将VOQ队列头部分组发送到相应的交叉点缓存;
3、输出端口通过特定的算法在非空的交叉点缓存中选择进行服务。
由于输入和输出的调度策略相互独立,所以很难确保交换系统在每个时隙整体上达到理想匹配状态,并且调度算法复杂度和交换系统规模有关,限制了其扩展性。
CLOS
架构说明
▲图4:CLOS架构图
如图4所示,每块业务线卡和所有交换网板相连,交换芯片集成在交换网板上,实现了交换网板和主控引擎硬件分离。CLOS架构是一种多级架构,每个入口级开关和每个中间级开关之间只有一个连接,并且,每个中间级开关正好连接到每个出口级开关,这种架构的优点是可以通过多个小型Crossbar 开关来实现大量输入和输出端口之间的连接,CrossPoint数量级别低于Crossbar架构的N的2次方,降低了芯片实现难度。
报文转发流程
• 基于Cell的动态负载
1、入方向线卡将数据包切分为N个cell,其中:N=下一跳可用线路数量;
2、交换网板采用动态路由方式,即根据下一级各链路的实际可用交换能力,动态选路和负载均衡,通过多条路径将分片发送到出方向线卡;
3、出方向线卡重组报文。
动态负载关键点在于能负载分担地均衡利用所有可达路径,由此实现了无阻塞交换。
CLOS架构交换机的分类
• 非正交背板设计
▲图5:非正交背板
如图5所示,业务线卡与交换网板互相平行,板卡之间通过背板走线连接。
背板走线会带来信号干扰,背板设计也限制了带宽的升级,同时,背板上PCB的走线要求很高,从背板开孔就成了奢望,这直接导致纯前后的直通风道设计瓶颈一直无法突破。
• 正交背板设计
▲图6:正交背板
如图6所示,交换机线卡与交换网板分别与背板对接。
同非正交背板设计一样,背板带宽限制了带宽的升级,同时也增加了散热的难度。
• 正交零背板设计
▲图7:正交零背板
如图7所示,业务线卡与交换网板互相垂直,背板走线为零,甚至无中板。
正交设计能减少背板走线带来的高速信号衰减,提高了硬件的可靠性,无背板设计能够解除背板对容量提升的限制,当需要更大带宽的时候,只需要更换相应板卡即可,大大缩短业务升级周期,并且因为没有了背板的限制,交换机直通风道散热问题迎刃而解,匹配数据中心机房空气流的走向,形成了贯穿前后板卡的高速、通畅的气流。
总结
下表将对以上三种架构做出总结:
对于高端机架式交换机,以Crossbar交换架构和CLOS交换架构为主。其中CLOS交换架构是当前大容量数据中心核心交换机的理想架构。锐捷网络RG-N18000-X系列交换机基于无阻塞的CLOS架构,并且采用“零背板”技术,在提供高效、稳定交换服务的同时,可实现未来10年网络可持续平滑升级。
本期作者:李莹
锐捷网络互联网系统部行业咨询
往期精彩回顾
- 【第一期】浅谈物联网技术之通信协议的纷争
- 【第二期】如何通过网络遥测(Network Telemetry)技术实现精细化网络运维?
- 【第三期】畅谈数据中心网络运维自动化
- 【第四期】基于Rogue AP反制的无线安全技术探讨
- 【第五期】流量可视化之ERSPAN的前世今生
- 【第六期】如何实现数据中心网络架构“去”堆叠
- 【第七期】运维可视化之INT功能详解
- 【第八期】浅析RDMA网络下MMU水线设置
- 【第九期】第七代无线技术802.11ax详解
- 【第十期】数据中心自动化运维技术探索之交换机零配置上线
- 【第十一期】 浅谈数据中心100G光模块
- 【第十二期】数据中心网络等价多路径(ECMP)技术应用研究
- 【第十三期】如何为RDMA构建无损网络
- 【第十四期】基于EVPN的分布式VXLAN实现方案
- 【第十五期】数据中心自动化运维技术探索之NETCONF
- 【第十六期】一文读懂网络界新贵Segment Routing技术化繁为简的奥秘
- 【第十七期】浅谈UWB(超宽带)室内定位技术
- 【第十八期】PoE以太网供电技术详解
相关推荐
更多技术博文
-
锐捷Wi-Fi 7高密AP RG-AP9520-RDX 携“动态波束赋形天线”正式登场!
锐捷网络新一代搭载智能天线的Wi-Fi 7高密无线接入点 RG-AP9520-RDX正式上市,该产品采用三射频设计,内置Al Radio智能射频,整机8条空间流,速率高达6.453Gbps,适用于高教、政府、普教、金融、商业等普通室内场景,亦可以满足企业大开间办公区、中大型报告厅、图书馆自习室、室内场馆、室内会场等高密度无线覆盖场景。
-
#无线
-
-
锐捷乐享云订阅,让IT运维更简单
在数字化转型的浪潮中,IT系统的复杂性正以惊人的速度增长。大多数企业在IT运维中面临故障定位难、效率低、成本高等问题,在此背景下,锐捷网络“乐享云订阅”服务应运而生,为客户提供持续高效的IT运维管理体验,助力企业增强灵活性并加速投资回报。
-
#统一运维
-
#IT运维
-
#IT运维管理
-
-
锐捷Wi-Fi 7新一代全院零漫游解决方案创新发布,为智慧医院建设注入新动力
在智慧医疗快速发展的今天,医院基础信息化网络正迎来一场革命性的转型。医疗数据流量的爆炸性增长,对网络带宽提出了前所未有的要求;智慧病房的广泛应用,设备无线化趋势明显,部署规模和终端数量急剧膨胀,运维的复杂性也随之水涨船高。此外,医院网络一方面在拥抱开放的物联网,实现智慧病房的多功能融合,同时也需坚守业务安全,满足等保标准。在这样的背景下,怎样的无线网络能支撑起智慧医疗当前与未来?
-
#医疗
-
#医院网络
-
#Wi-Fi 7
-
#无线
-
-
不可忽视的网络安全日志分析
网络安全日志分析是保障数字时代信息安全的关键措施。新一代日志分析与审计系统通过全面收集、标准化处理和智能分析各类网络日志,及时发现安全威胁和异常行为,提供全局视角和深度安全洞见,确保业务的不间断安全运营。
-
#知识百科
-
#安全
-